Proof-of-Decision:
Achieving Fast and Timeout-Resistant Consensus
in Asynchronous Byzantine Environments *

Aleksander Kampa
ak@sikoba.com

Stkoba Research

September 2019

Abstract

In Asynchronous Byzantine environments, the main difficulty is dealing with muteness
failures. By spawning multiple single-sender consensus processes in parallel, and introducing
the concept of Proof-of-Decision to prevent premature timeout messages form Byzantine nodes,
we achieve efficient consensus that is very fast under favourable circumstances.

1 Introduction

The consensus problem is fundamental to distributed computing. It is not a single problem, but
rather a class of related problems which can differ quite widely in their assumptions, constraints
and goals. Reaching consensus when all nodes can propose different values is not the same as
reaching binary consensus.

To solve consensus in the context of real-world distributed system, such as a blockchain, one
approach is to use the full power of available cryptographic and consensus primitives. This is
the path chosen in ”The Honey Badger of BFT Protocols” [MXC"16], which makes heavy use of
threshold cryptography to temporarily hide proposals, and also for its cryptographic common coin.
Other primitives used are Reliable Broadcast and Common Subset Agreement. It is an impressive
achievement, which comes at a cost of significant complexity as well as some limitations as to
scalability.

The goal of this paper is to present a simpler approach, suitable for situations where the validity
of proposals can easily be checked. The focus is on simplicity and on achieving fast consensus in
favourable circumstances.

*Research supported by Fantom Foundation

2 Definitions

For the definitions of most terms used in this paper, please refer to [Kaml8]. An additional
definition is given below.

In a traditional setting, all nodes propose a value and the goal of the consensus is to agree on one
of the proposed values. To deal with situations where only one node proposes values, we introduce
the following definition:

Single-Sender Consensus Protocol A protocol allowing all correct nodes in a network to decide
a single value when only one well-identified node (the proposer) can propose values which must be
different from the special value 0. The value 0 is used to signal the decision to reject the proposal.
Despite possible faults, the protocol satisfies the following conditions:

e Agreement: all correct nodes decide the same value;

Determinism: if the proposer proposes only one value v, then this will be the decision value;

Validity: a correct node can only decide a value proposed by the proposer, or 0;

Termination: all correct nodes eventually (with probability 1) decide a value.

3 Model

3.1 Consortium Blockchain

We place ourselves in the context of a Consortium Blockchain, in which all nodes are well known
to each other and communicate using cryptographically signed messages. Therefore, nodes cannot
impersonate each other.

We assume a Weakly Byzantine Environment [Kaml8]: there are n nodes, of which at most ¢ can
be faulty, the rest being honest. Of the faulty nodes, at most t' can be Byzantine.

The nodes communicate over a Reliable Asynchronous Network: all messages sent eventually get
delivered, but with arbitrary delays.

Each node consists of a Consensus Engine and a Deterministic State Machine which are identical
on all honest nodes. The role of the consensus engine is to communicate with other nodes and agree
on ordered sets of transactions to submit to the state machine. It may also perform administrative
tasks, such as seeking consensus on accepting new nodes and on rating or suspending nodes. The
role of the state machine is to execute the transactions received from the consensus engine.

3.2 Valid transactions

A valid transaction is one that meets a set of criteria for being accepted for processing by the state
machine. First of all, the transaction needs to be correctly formatted and signed. Other criteria
may be related to the account sending the transaction, such as:

e Consistency of tx nonce;

e Minimum amount of tokens in sender account;

e Maximum transaction volume per time period not exceeded, based for example on tokens
held.

A transaction set is valid if it contains only valid transactions, and invalid otherwise. An honest
node can easily verify if a transaction or a transaction set is valid or invalid.

Note that after having been submitted to the state machine, a valid transaction may still fail to
be executed. In other words, validity does not imply successful execution.

3.3 Block-Based Consensus and Proposed Values

We are in a context of block-based consensus, where the nodes aim to reach a common value
in successive rounds, which are also called blocks. Rounds or blocks are identified by a unique
sequential number.

During a round, one or more nodes are expected to submit proposals that contain a set of trans-

actions to process. A proposal will typically be a data structure with the following content:

e p;. - sending node

e 7 - round or block number

tr - proposal content, which is a (possibly empty) set of transactions

Signature

e Hash

A proposal will be denoted INIT;,(r,tr). When there is no risk of confusion, this may be written
as INIT(tr) or simply INIT.

4 Types of Failures

In our model, the adversary is given extensive powers over message delivery and over the behaviour
of faulty nodes. Let’s focus on three specific types of adversarial action.

4.1 Message Relay Failures

The adversary can make faulty nodes ignore certain incoming transactions, refuse to relay them
and/or not include them in their proposal sets. There are several defenses against this:

e Users wishing to submit a transaction can send it to multiple nodes. For example, if at most
25% of nodes are faulty, then the probability that 5 randomly chosen nodes are all faulty
is below 0.1%. Here, we assume an efficient gossip protocol such that if one honest node
receives a transaction, we can be sure that all honest nodes eventually receive it.

e Users submitting transactions can request a signed acknowledgement of receipt: if none
is received within a certain time period, they can resubmit to another node. This will
ensure that transactions are not submitted to crashed nodes, and provides evidence that a
transaction was submitted to a node.

e Users can forward acknowledgements of receipt to some other random nodes, or to special-
purpose observer nodes, to monitor possible cheating attempts. If the node that acknowl-
edged receipt then does not include this transaction in its proposal set, this may become
visible by comparing node timestamps (this will require additional research).

e Users (or some trusted relays) can monitor if the transaction is included in a transaction set
and, if that does not happen promptly, resubmit their transaction.

This is as much as we will say about message relay failures in this paper.

4.2 Multiple Proposals

A node may attempt to send different proposals to different nodes. Because all proposals are
signed, two different proposals from the same node indicate either Byzantine behaviour, or that
the node’s private key was compromised. Whatever the reason, an expulsion procedure of the
offending node should be initiated.

At certain stages of the protocol, a node may also send different messages to different nodes. If an
honest node obtains proof of such a behaviour, this should also result in an expulsion procedure.

While any consensus protocol will need to guard against multiple proposals, it is the easiest Byzan-
tine behaviour to identify, and thus the least likely.

4.3 Muteness Failures

The adversary has the power to prevent faulty nodes from sending out message or proposals, or
to delay such sending. This is the most difficult attack to defend against, as malicious delays are
hard to distinguish from simple network delays.

5 Reaching Consensus on a Single Proposal

Assume that the node p;, broadcasts INIT (py, 1, tr;) to all nodes. Under this assumption, when an
honest node receives INIT, it can simply verify if the proposal is valid or not and decide to accept
or reject it accordingly, knowing that all other honest nodes will come to the same conclusion. No
additional steps are needed to reach consensus in this case.

What this means is that once all honest nodes know what the proposal is, consensus has essentially
been reached. The difficulty is to actually reach agreement as to what the proposal is. Note that
a node may also delay sending out proposals, or crash, in which no proposals will be sent.

To problem of reaching consensus on the proposal of a single node py can thus be reduced to
answering the following two questions:

Has a proposal been sent?
If yes, what is the proposal?

Let’s first deal with the second question, which is the easier one.

6 Single-Sender Consensus Protocols

In this section, we present three Single-Sender protocols.

6.1 SSC-1: Single-Sender Consensus without Timeout

We aim to reach agreement on the proposal sent by node py, the proposer, which is expected to
broadcast an INIT value. The proposer can be Byzantine and sent different INIT values to
different nodes, or fail to send I NIT values to some nodes.

Each node p; manages the following local variables:

e REC; whose initial value is L and which holds the first proposal value received, either directly
from the proposing node, or via another node.

e SET; which is the set of REC values received from other nodes, including its own REC;
value.

An INIT value sent by p;, corresponds to REC),. The REC values being are simply signed copies
of REC}, and cannot therefore be forged. We will say that two REC values are identical if they
correspond to the same INIT value.

During the consensus process, nodes will be sending messages to each other. Whenever necessary,
we assume that messages are not only signed, but also include a proof. For example: when a node
sends a REC message, it includes the original INT or REC message received as proof; in the case
of a PROPOSE;(0) message, it must contain two valid REC}, and REC’;’C values as proof; etc.

The procedure executed by every node p; is the following:

Protocol SSC-1 (n > 2t + t)

Step 1: wait to receive a first valid REC; value (either an INIT
from the proposer, or a copy of such an INIT via another node). Set
REC; to this value, initialise SET; and and broadcast REC;.

Step 2: collect up to (n — t) valid REC messages, updating SET;
accordingly.

If at any stage a REC value different from REC; is received, broad-
cast PROPOSE;(0) and move to Step 3.

If (n —t) identical REC messages have been received, broadcast
PROPOSE;(REC;) and move to Step 3.
Step 3: collect up to (n —t) valid PROPOSE values.

If at any stage t+ t+1 proposals with a non-zero value v are received,
decide for that value and forward that decision to Step 4.

If at least one nonzero value v is received (but less than ¢ + ¢ + 1),
propose that value in Step 4.

If all n — ¢ proposals received were 0, propose 0 in Step 4.

Step 4: enter Underlying-Consensus, treating votes for any value
other than 0 as votes for 1.

Lemma 1. If the proposer acts honestly, broadcasting a single INIT value, then all honest nodes
decide for that value in Step 3.

Proof: Because messages cannot be faked, and the Adversary can delay but not drop messages,
all honest nodes will set the same REC message in Step 1. As a result, in Step 2 all honest nodes
will receive (n —t) identical REC messages and thus propose the same value. In Step 3, all honest
nodes will thus receive (n — t) identical proposals and therefore decide for that proposed value,
because n > 2t + t' impliesn —t =t + t+ 1.

What this shows is that when the sender is honest, consensus can be achieved quickly. Now let’s
look at situations when the sender can be Byzantine.

Lemma 2. If the proposer is Byzantine, the Adversary can cause any number of honest nodes to
PROPOSE(0) at the end of Step 2.

Proof: There are many ways the adversary can achieve one or more PROPOSE(0) from honest
nodes, here is an approach using an ”isolated node”. We divide the set of honest nodes into three
subsets:

e] - a single ”isolated node”, which will propose 0
e HO - a (possibly empty) set of honest nodes which will propose 0

e HV - a (possibly empty) set of honest nodes which will propose a nonzero value

Initially, the adversary makes the proposer to send INIT to all nodes except I, and delays all
messages sent to I. The other nodes are left to exchange messages, with the adversary using
its powers to influence message delivery to obtain the following situation: all nodes in HV have
proposed a nonzero value, and all nodes in H0 have received INIT exactly once.

At that point, the adversary causes the proposer to send INIT’ to J, makes J deliver that INT T
value to all nodes in H0O and also makes J receive the INIT value from some node. This achieves
the desired result.

Lemma 3. If two honest nodes propose a non-zero value in step 2, then it is the same value.

Proof: Consider an honest node A proposing a nonzero value in Step 2. This node must have
received a set R(A) of n —t REC messages containing identical values. Among these messages, the
set RH(A) of messages sent from honest nodes has at least n — ¢ — t' elements. Consider another
honest node B that received a set R(B) of n —t REC messages containing identical values. For the
sets RH(A) and R(B) to necessarily overlap, we need to have |RH(A)| + |R(B)| —n > 0. This is
the case, because (n—t—t')+ (n—t)—n = n—2t—t > 0. This means that at least one of the REC
messages received by B is identical with a message received by A from a honest node. Therefore,
all values received by B must be equal to that value.

Corollary. Lemma 3 applies to any nodes, honest or Byzantine, as we require that any proposal
be accompanied by proof. A proposal for a non-zero value in Step 2 must therefore come with a
set of (n —t) REC values.

Lemma 4. If an honest node decides for a value in Step 3, then any other honest node will either
also decide on that value in Step 3, or propose that value in Step 4.

Proof: Tt is straightforward to see that if a node receives n —t — ¢ proposals with a non-zero value
v in Step 3, then any other node can receive at most n —t — 1 proposals with value 0 in that Step,
and must therefore receive at least one proposal with a non-zero value. By Lemma 3, that non-zero
value is the same for all nodes.

We again note that this Lemma 3 applies to any nodes, honest or Byzantine. Because proof is

required with every proposal, the only malicious action available to a Byzantine node is to delay
sending a proposal.

Theorem 1. The SSC-1 protocol is not a valid Single-Sender Consensus Protocol, as it does not
meet the Termination criterion.

Proof: When the proposer sends a value, the protocol does meet the four conditions of a Single-
Sender Consensus Protocol. This results directly from Lemma 3, and from the fact that Underlying-
Consensus is a valid Binary Consensus Protocol. However, when the proposer does not broadcast
any value, the protocol fails.

6.2 SSC-2: Single-Sender Consensus with Timeout

We now modify the previous protocol to attempt to deal with timeouts. Honest nodes wait for
some predetermined time A. If no INIT or REC are received, they will set REC to the timeout
value X.

Protocol SSC-2 (n > 2t + t)

Step 1: wait to receive a first valid REC; value (either an INIT from
the proposer, or a copy of such an INIT via another node). Set REC;
to this value, initialise SET; and and broadcast REC;.

If no valid REC was received after a time A, set REC; to X.
Step 2: collect up to (n — t) valid REC messages, updating SET;
accordingly.

If at any stage a REC value different from REC; is received, broadcast
PROPOSE;(0) and move to Step 3.

If (n—t— t') or more identical messages v were received, and thus at
most ¢ messages X, broadcast PROPOSE;(v).

Else (strictly more than ¢ messages X received), broadcast
PROPOSE;(0).

Step 2BIS (only applicable if n < 2t + 2t'): collect up to (n — t)
PROPOSE values.

If all values are identical and equal to v, broadcast PROPOSE2;(v)
Else broadcast PROPOSE?2;(0)

Step 3: collect up to (n —t) valid PROPOSE values (or PROPOSE2
values if n < 2t + 2t).

If at any stage ¢ + t+1 proposals with a non-zero value v are received,
decide for that value and forward that decision to Step 4.

If at least one nonzero value v is received (but less than ¢ + ' + 1),
propose that value in Step 4.

If all n — ¢ proposals received were 0, propose 0 in Step 4.

Step 4: enter Underlying-Consensus, treating votes for any value
other than 0 as votes for 1.

Let’s start with a rather obvious remark: if the proposer does not send any message, all honest
nodes will eventually propose 0 before entering Step 4, and will therefore decide 0 in Step 4.

Lemma 5. We assume the proposer is Byzantine. For any integer k > 1, if n < %t + 2t then
honest nodes can propose up to k different nonzero values in Step 2.

Proof: First, we note that if n—t —t' < t', or n < t + 2t', then the adversary can make every single
honest node propose a different value. This is done by having the Byzantine proposer send as
many different messages as necessary to the other Byzantine nodes, after which n—t— t Byzantine
nodes send different values to each honest node.

Let’s define hc-nodes as the set of honest and crash-prone nodes. We will assume that all crash-
prone nodes actually act like honest nodes. To start with, we look at one honest node receiving
n—t—t messages v in the following configuration:

e n—t—2t henodes proposing v)

o ¢ Byzantine nodes proposing v) votes for 0: n—t —¢'
e ¢ he-nodes proposing X) votes for x : t'

e delayed: t hc-nodes proposing other values

If we want (k — 1) additional honest nodes to decide on other values, we can only use the ¢'
Byzantine nodes, as well as the ¢ hc-nodes that were blocked. The Byzantine nodes can change
their message for each honest node, but the hc-nodes cannot. To maximise the number of values,
we therefore need to divide the values sent by the ¢ hc-nodes into & — 1 sets. So the condition
becomes:

1 I 1
mt +tz2n—-t-—t (1)
This yields the desired result.

So we see that if n > 2t + 2t', then honest nodes can propose only one value in step 2. However, if
n < 2t + 2t', more than two values are necessary. That is why we need Step 2BIS in that case.

Lemma 6. If two honest nodes propose a non-zero value in Step 2BIS, it is the same value.
Proof: Similar to Lemma 3.

Lemma 7. If an honest node decides for a value in Step 3, then any other honest node will either
also decide on that value in Step 3, or propose that value in Step 4.

Proof: Similar to Lemma 4.

Theorem 2. The SSC-2 protocol is not a valid Single-Sender Consensus Protocol, as it does not
meet the Determinism criterion.

Proof: Even if the proposer is honest, the Adversary can cause any number of honest nodes to
PROPOSE(0) at the end of Step 2. This is because by delaying messages in Step 1, the adversary
can make any number of honest nodes set REC to X. As a result, the honest nodes may decide on
0.

In other words, when going from SSC-1 to SSC-2, we have achieved Termination but have lost
Determinism. If we introduce a limit on the delays that the adversary can cause, we can avoid
timeout messages by honest nodes and obtain the following result:

Theorem 3. The SSC-2 protocol is a Single-Sender Consensus Protocol if the adversary cannot

delay messages more than A.

6.3 SSC-3: Single-Sender Consensus with Timeout and Proof

We have seen how the Adversary can trigger timeout messages from honest nodes in protocol
SSC-2 to defeat its purpose. We now introduce the protocol SSC-3, which introduces the concept
of proof. This proof is simply some data item without which nodes are not allowed to send X
(timeout) messages. The definition of this proof is not part of the protocol and must be added
when implementing this protocol. We therefore define SSC-3 as follows:

Protocol SSC-3

This protocol is identical with protocol SSC-2, except that in Step 1,
the value X can be sent only together with a proof.

In the next section, we will show how such a proof can help us solve our consensus problem.

6.4 Evalutation of the SSC protocols

We have seen that under favourable conditions, Single-Sender consensus can be achieved quite
quickly, without the need to trigger Underlying-Consensus. When the proposer is honest, the
number of messages sent in SSC-1 are given below. This count includes the messages that nodes
send to themselves.

The proposer:
e the proposer broadcasts n INIT messages
All nodes:

e Step 1: receives n —t and broadcast n REC messages
e Step 2: receives n —t and broadcast n PROPOSE messages

e Step 3: receives < n — ¢, decide and broadcast n decisions

Under favourable circumstances, in which the adversary does not trigger timeouts, SSC-2 will need
the same number of messages if n > 2t + 2t', and an additional n messages if 2t + ¢ < n < 2t + 2t'.
This is again a good performance.

All nodes - additional messages in REC-2 if n < 2t + 2t':

e Step 2BIS: receives n — t and broadcast n REC messages

7 Multiple-Sender Consensus

7.1 Introduction

To overcome the limitations of SSC-1 and SSC-2, we take an approach suggested in [CGLR17]
which consists in launching multiple consensus processes in parallel. In this case, we will launch
multiple SSC-3 processes with a specific proof.

At the beginning of each consensus cycle, we assume there is a process that randomly selects an
ordered group of nodes that will be the proposers. In [CGLR17] all nodes propose values, but
are ordered in some random way that cannot be predicted in advance. This set of nodes should
contain a sufficiently high proportion of honest nodes with a probability of essentially 1.

The process of choosing the random set of k proposing nodes for each block must be deterministic
and well known to all nodes, here we simply assume it as a given.

7.2 The MSC Multiple-Sender Consensus

We spawn a separate SSC-3 consensus process C; for each proposing node p; with i € [1,m].

Every proposing node initialises an internal variable D to 1. This variable will be set to the
smallest ¢ € [1,m] for which C; has reached a decision for a nonzero value.

We define a proof as a set of t + ' + 1 identical nonzero proposals received in Step 3 of some
C;. Obtaining a proof is therefore equivalent to deciding in Step 3 of the protocol, which ensures
that protocol C; will decide for that nonzero value. We therefore name this proof ”Proof-of-
Decision”. Note that this proof is valid in all of the ongoing processes.

All nodes participate in all of the m consensus processes. Upon obtaining its first proof from

process C}, an honest node:

e sets D to j;
e stops participating in any processes C; : i > j;
e sends X (together with its proof) to any processes C; : i < j for which it has not yet received

any INIT or REC value in Step 1;

After that, the node keeps participating in all consensus processes C; : ¢ < D that have not yet
terminated. Whenever it reaches a decision on a nonzero value for a process C), with k < D, it
sets D to k and stops participating in any processes C; : 7 > D.

The consensus process ends in either one of the two following configurations:

e D=1;

e D > 1 and all processes C; : i < D have terminated with value 0

The result of the consensus process is the proposal of Cp.

It is easy to see that MSC meets the required criteria of Agreement, Unanimity, Validity and
Termination.

Theorem 4. MSC is a Consensus Protocol.

10

Proof Outline: The group of proposing nodes contains a majority of honest nodes. Each of these
will broadcast an INIT value and because of the proof, Byzantine nodes cannot prevent at least
one process to reach a decision for a nonzero value. The ordered subset of processes which reach
a nonzero value is thus not empty and has a smallest element.

7.3 Removal Procedure

At any stage of the consensus process, if an honest node sees evidence that the proposing node
has sent more than one proposal, or that a node has send different REC values to two or more
nodes, or similar Byzantine behaviour, it initiates a removal procedure. There are various ways to
this, one is simply to introduce special removal transactions which can be added to proposal sets
together with other transactions.

7.4 MSC Performance under favourable conditions

Under favourable conditions, in which there are only few faulty nodes, it is likely that process C;
will often terminate with a nonzero value. In these cases, consensus can be reached with limited
overhead and in three or four communication steps.

8 Limitations and Improvements

A node may attempt to cheat by excluding some transactions in its proposal. This is mitigated
by the fact that this will only cause a delay of at most a few blocks. Another way to mitigate this
is to always complete the process for the first several (say 3 or 5) processes, and take the union of
all nonzero results.

We have assumed that all the nodes in the network participate in the parallel consensus processes in
MPC. In a large network, we could instead have only a random subset of the nodes run consensus.
We would just need to make sure that the probability that the number of crash-prone and Byzantine
nodes in that subset meets certain criteria with very high probability.

To accelerate the process, we could imagine focusing on a subset of the lowest-ranked parallel
consensus processes first. The likelihood that one of them will yield a nonzero decision will generally
be quite high.

For the choice of a random set of proposing nodes, we could for example use a cryptographic
common coin based on a threshold signature scheme. This is used in the Honey Badger protocol
[MXC+16J for another purpose, namely to achieve binary Byzntine agreement, based on previously
published approaches.

9 Conclusion

The MSC protocol presented in this paper is a simple, efficient and scalable protocol for blockchains
in which the set of validator nodes is known at all times. It introduces the concept of ”Proof-of-
Decision” to defend against spurious timeout messages from Byzantine node.

It assumes the existence of a Binary Consensus Protocol, whose existence in the Weakly Byzantine
scenario has not yet been proven. Therefore, Proof-of-Decision can currently only be applied in
the traditional Byzantine scenario.

11

References

[CGLR17] Tyler Crain, Vincent Gramoli, Mikel Larrea, and Michel Raynal.

(leader/randomization/signature)-free byzantine consensus for consortium blockchains.
CoRR, abs/1702.03068, 2017.

[Kam18] Aleksander Kampa. One-step consensus in weakly byzantine environments. http:
//research.sikoba.com/, 2018.

[MXC+16] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badger
of BFT protocols. TACR Cryptology ePrint Archive, 2016:199, 2016.

12

http://research.sikoba.com/
http://research.sikoba.com/

	Introduction
	Definitions
	Model
	Consortium Blockchain
	Valid transactions
	Block-Based Consensus and Proposed Values

	Types of Failures
	Message Relay Failures
	Multiple Proposals
	Muteness Failures

	Reaching Consensus on a Single Proposal
	Single-Sender Consensus Protocols
	SSC-1: Single-Sender Consensus without Timeout
	SSC-2: Single-Sender Consensus with Timeout
	SSC-3: Single-Sender Consensus with Timeout and Proof
	Evalutation of the SSC protocols

	Multiple-Sender Consensus
	Introduction
	The MSC Multiple-Sender Consensus
	Removal Procedure
	MSC Performance under favourable conditions

	Limitations and Improvements
	Conclusion

